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Abstract

Complex network protocols like the Border Gateway Pro-
tocol (BGP) are prone to implementation errors that cause
unintended behaviors with potentially global consequences.
We introduce an approach and tool called MESSI (Modular
Exploration of State and Structure Inclusively) to automati-
cally generate tests for black-box BGP implementations. Our
approach is model-based, leveraging an executable model of
BGP to generate behavioral tests. However, doing so effec-
tively requires addressing new challenges such as the stateful
nature of BGP and the need to generate complex structures
like regular expressions in route maps. We used MESSI to
generate roughly 150K tests that capture different aspects
of BGP, such as route-map filtering, the decision process,
route aggregation, and dynamics. These tests identified 22
correctness bugs across several widely used open-source BGP
implementations (FRR, Quagga, GoBGP, BIRD, Batfish) and
one closed-source implementation. Eight of these errors have
already been fixed. While our models are BGP-specific our
approach is not: thus we expect it can be adapted to test other
stateful protocols with complex structures.

1 Introduction

The Border Gateway Protocol (BGP) is the backbone of
modern internet routing, as it connects the various autonomous
systems to one another [47]. Due to its ability to enforce
expressive policies, BGP is also widely used by organizations,
for example, to establish reliable communication in data
centers and to shape policies within enterprises. Due to its
ubiquity and large blast radius, BGP errors can have large-scale
effects across the globe. Unfortunately, BGP-related outages
are quite common [7, 18, 31, 36, 41, 43, 50]. While there has
been significant research on identifying BGP configuration
errors (e.g., [5, 24, 26, 34, 48]), there has been less work on
automatically identifying BGP protocol implementation
errors, which occur frequently in the various widely used
BGP implementations and are the focus of this work [8, 9, 19].
According to a study conducted in [39], 36% of the significant
and customer-impacting incidents in Microsoft’s network are

caused by software implementation bugs.
Our goal is to automatically generate tests for BGP

implementations that cover a wide range of BGP behaviors.
Doing so is challenging because each test case consists of a
triplet of an incoming route announcement, a configuration
that indicates how incoming announcements should be
treated, and the current BGP state of the router. Traditional
test-generation approaches are not sufficient: for example,
fuzzing is unlikely to find combinations of these inputs that
explore a wide variety of interesting behaviors. Instead, we
are inspired by recent work that employs model-based testing
to find errors in black-box protocol implementations [33].
The basic idea of that approach, called SCALE, is to build an
executable model of a protocol and then symbolically execute
the model in order to generate tests. The model encodes the
intended behavior of the protocol, as specified in RFCs, and
the use of symbolic execution ensures that the generated tests
cover a wide variety of scenarios represented by different
execution paths through the model. The resulting tests can then
be executed on multiple black-box protocol implementations,
with any differences among them identified as potential errors.

While promising, the SCALE approach targeted DNS
nameserver implementations. The BGP setting introduces
several new challenges for test generation. First, BGP is state-
ful: the handling of a BGP announcement depends on earlier
announcements; by contrast, DNS nameservers are stateless.
Handling state dramatically increases the search space for test
generation and requires correlating state with other protocol
inputs to identify interesting behaviors. Second, DNS configu-
rations consist of a flat set of records in a zone file. By contrast,
BGP configurations are like little programs, with complex and
often hierarchically structured policies defined via route maps.
Notably, BGP policies depend heavily on regular expressions:
but it is infeasible to symbolically generate regular expressions
both theoretically (the theory of strings with symbolic regular
expressions describes non-regular languages) and in practice.
Third, DNS nameserver implementations all accept a standard
format for configurations; in contrast, the various BGP
implementations like Cisco, Juniper, Quagga, BIRD, and
GoBGP have distinct configuration languages that differ in
both obvious and subtle ways, making it difficult to perform



differential testing across them.
We present an approach and corresponding tool called

MESSI1 (Modular Exploration of State and Structure
Inclusively) to overcome these challenges. First, we handle the
complexity of BGP by decomposing it into several modules
and generating tests for each module individually. The
benefit of this decomposition is that testing each module only
requires us to model the portion of BGP inputs, configurations,
and states that are relevant to that module, which makes a
model-based approach tractable. For example, generating tests
for route-map filtering requires us to model the way that a
route map processes an input route, but it does not require us
to model the state. In contrast, generating tests for the BGP
decision process requires us to model router state, but only
a specific portion of it — the single best route installed so far
to a destination — and does not require us to model complex
configurations. In addition to these models, MESSI also
includes models for route aggregation as well as for dynamics,
which models router state changes such as updates to a route
map and updated route announcements.

Second, we handle test generation in the presence of
regular expressions through a hybrid approach. Inspired by
enumerative combinatorics [38], we use a form of enumerative
testing to generate (not just count) all forms of regular expres-
sions up to a specified size. We then generate positive and
negative example strings for each regular expression, doing
so in a manner that provides coverage guarantees over the
regular expression’s finite automaton representation. Finally,
our model of route-map filtering treats regular expressions
concretely — we supply it with specific regular expressions
that we have generated, and the model uses only the given
positive and negative example strings when building concrete
routes to match against such regular expressions. Finally, to
handle the diversity of BGP configuration languages, we have
created our own intermediate representation for configurations
along with a lightweight shim that translates from this
representation to the various vendor-specific languages.

Our tool MESSI generated roughly 150K test cases for
the BGP decision process, Route filtering, Aggregation, and
Dynamics within two days. From 150K tests, we found around
1500 failed test cases across all implementations. We added
tags to each test case based on the path they traverse in the
code logic and thus grouped equivalent failed cases into
buckets. Although the BGP implementations we tested are
well maintained and in use for several years, we still found
22 bugs across different BGP implementations, including
FRR [27], Quagga [45], GoBGP [28], and Batfish [3]. 11 of
the bugs are acknowledged by the developers and 8 of them
are already fixed. Our tool is able to find 18 bugs that were
unknown previously, while the other 4 had been reported
earlier. These bugs cover a range of BGP features, e.g., route
map logic, route aggregation, community lists, etc.

1https://github.com/rsingha108/MESSI

The rest of this paper is structured as follows. §2 describes
the background and motivation of this work using some
noteworthy bugs that were automatically found by our tool. §3
describes our solutions to the new challenges that automated
testing of BGP introduces, such as regex undecidability and
statefulness. Then in §4.2, we describe the experimental setup
and methodology, showing how our solutions were executed
to test black-box BGP implementations. § 4.3 presents our
results – a list of major bugs, with their descriptions, that we
were able to find using our tool. §6 surveys related work, while
§7 outlines future work and draws conclusions.

Contributions: This paper’s contributions are:
• The first automated approach and tool MESSI to identify

RFC violations in black-box BGP implementations.
• Modular exploration to deal with protocol complexity.
• Efficient enumerative testing of regular expression inspired

by enumerative combinatorics, which cannot otherwise be
handled by symbolic testing.

• A testing framework to catch bugs that are generated due to
dynamics of BGP often caused by incorrect implementation
attempts to do an incremental computation

2 Background & Motivation

The Border Gateway Protocol (BGP) operates as an essential
component of the Internet’s control plane that connects
different autonomous systems (ASes). The BGP protocol has
many different aspects. We focus on four specific aspects —
the decision process, route filtering, route aggregation, and
dynamics — as these are complex and commonly used, and
we observed many correctness bugs due to them in the bug
databases for popular BGP implementations.

The decision process refers to the determination by a BGP
router of the best route to some destination, which involves
a comparison of route attributes (Local preferences, AS path
length, Multi-Exit Discriminator, etc.). The best route is added
to the routing information base (RIB) of the BGP router and ad-
vertised to neighbors. Route filtering empowers administrators
to tailor route advertisements based on desired policies. It is
performed by route maps, which are effectively functions that
permit or deny route advertisements based on the properties of
those advertisements. Route maps can also transform accepted
routes by updating their attributes. Accepted routes then go
through the decision process described above. Route aggre-
gation is a feature that enables the representation of routes to
multiple contiguous IP prefixes as a single summarized route,
thus enhancing routing efficiency. Finally, BGP routers must
constantly adapt to changes in the environment, for example,
the withdrawal of route advertisements and updates to routing
policies. We refer to such changes as BGP dynamics.

In this section, we demonstrate through concrete examples
the challenges for testing BGP implementations as well as the
capabilities of our MESSI approach and tool.

https://github.com/rsingha108/MESSI
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Route Map

bgp community-list expanded
DELCOM permit [1-2]*:[1]?

route-map RMAP permit 10
    match local-preference 150
    set comm-list DELCOM delete

100.10.1.0/24, LP=150
COM=[22221:1]
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Send Route

Extract RIB Routing Information Base
100.10.1.0/24, Com=[22221:1]

Figure 1: A MESSI test for the BGP route filtering with
regular expression.

2.1 Route Filtering and Regular Expressions

Figure 1 shows a pair of a route map and route announcement
that MESSI automatically generated to test BGP’s route
filtering behavior. The route map permits routes that have
local preference 150 and deletes specific communities from
such routes, namely those matching the regular expression
in the community list DELCOM, which MESSI also generated.
The generated route announcement should be permitted by
the route map since it has the right local preference, and its
community 22221:1 should be deleted since it matches the
regular expression [1-2]*:[1]?. However, as shown in the
figure, when we tested this route map and route announcement
on the FRR BGP implementation, we found that the route was
accepted, but the community was not deleted.

Upon investigation, we learned that the bug arises only
when the matched regular expression has only one ? symbol in
it that appears at the end, and the configuration is installed via
the command line because this symbol is also overloaded as
the “help” command in the configuration console. The result is
that the permit line in the configuration is completely ignored.
Finding this bug is non-trivial: it requires a configuration
containing a regex that ends with ?, and there be no other ?
symbol in it; it also needs a route announcement that matches
the corresponding route-map stanza and matches the regex.
When we raised this issue on FRR’s GitHub page, they
acknowledged it and suggested two workarounds. The first
is to use ˆ+V+? on the CLI to escape it. The second is to enter
a blank space directly after the ?.

2.2 BGP Dynamics

Many BGP implementation bugs lurk in the dynamics of BGP.
For example, when a router configuration is changed, the
router may not behave as intended after the change is made.
This is often caused by (incorrect) implementation attempts

Route Map
ip prefix-list TEST seq 5
permit any

route-map RMAP permit 10
    match ip-address

prefix-list TEST
exit

10.1.1.0/24
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Generate Config
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Extract RIB

10.2.2.0/24

Routing Information Base
10.1.1.0/24

Routing Information Base
10.1.1.0/24
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4

4

5 Extract RIB
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Figure 2: A MESSI test for route filtering with dynamics.

to do more efficient incremental computation. We describe
an example of this kind that MESSI found automatically.

Dynamics Bug in Route Filtering. Figure 2 shows a
pair of a route map and route generated by MESSI. In the
FRR BGP implementation, initially, because of the permit
any line in the generated prefix list, the announcement
for 10.1.1.0/24 is permitted. Subsequently, suppose the
definition of the prefix list is changed to only permit the
prefix 10.2.2.0/24. Therefore, when a route announcement
to 10.1.1.0/24 is sent, it should now be rejected, but we
found it was (erroneously) still accepted. The bug was caused
by an ANY flag that the implementation maintained that was
not properly reset upon configuration updates because of an
incorrect (but efficient!) incremental computation. The bug
was acknowledged and fixed by the developers.

2.3 Route Map Semantics
Figure 3 shows a test case generated by MESSI where
it simultaneously generated a route map and a route. The
route map refers to a community list with two communities
0.11 and 0:222 and permits any route that has one of those
communities. MESSI generated a route with community
0:222 for this test, which should match with community-list
COMM, and the route should be accepted by the router.

When we ran this test case on the FRR router, FRR did
not accept the route. Further investigation showed that the
FRR documentation stated the semantics of the community
list to be "OR" – i.e., if the incoming route mentions any of
the communities in the community list, then it should match
the community list. However, the implementation displayed
"AND" semantics: it only matched when the route contains
all the communities in the community list. This was evident
when we tested the same route map with an incoming route
that has community [0:11 0:222]. When we posted this
issue on the GitHub page of FRR, the developers confirmed
it was a documentation bug and fixed the issue.
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Route Map
bgp community-list COMM
permit 0:11 0:222

route-map RMAP permit 10
  match community COMM

100.10.1.0/24
COM=[0:222]
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Figure 3: A MESSI test showing buggy behavior of Commu-
nity list in Route Maps

3 Model Based Testing for BGP

This section describes our approaches to addressing the
challenges of test generation for BGP in MESSI. First, we
overview our approach at a high level. We then explain in
detail how MESSI generates tests for each of the four key
aspects of BGP on which we focus.

3.1 Overview
The MESSI approach builds on prior work on model-based
testing for network protocol implementations [33]. Specifi-
cally, we built an executable model of (parts of) the BGP proto-
col based on the relevant RFCs. We generally adopted the be-
haviors that are most commonly used across all the implemen-
tations based on our interpretation of the documentation. To
generate tests, we symbolically execute the model [35], which
involves picking execution paths through the model, determin-
ing the constraints under which each such path will be taken,
and then solving the constraints to generate a concrete test that
traverses the path. If any unexpected behavior is observed dur-
ing testing, we check whether it is a genuine bug or the software
implementer’s choice. It is a cyclic and iterative process, where
we manually validate the model based on our reading of the
RFCs but also through our testing setup – unexpected behaviors
can indicate bugs in our model, which is then refined.

The model is built in C# using a constraint-solving library
called Zen [4, 6]. Zen allows the model to be written as
regular C# code but with some inputs declared as symbolic.
It then performs symbolic execution to solve for these inputs
automatically, leveraging Satisfiability Modulo Theories
(SMT) solvers like Z3 [21] to solve the constraints. A model
would typically have an unbounded number of paths, but
Zen offers various ways to limit the set of desired paths, for
example, those whose size is bounded by a depth.

Prior work that used this approach built a single monolithic
model of the network protocol, which in that case was a DNS

Route
map in

Route
map outBest path

selection
algo

Figure 4: An overview of BGP route selection.

nameserver [33]. However, BGP is significantly more complex
than DNS nameservers. For example, BGP is stateful, whereas
DNS nameservers are stateless, and BGP configurations are
much closer to programs — containing forms of conditionals,
function calls, and nested structure, for example — than to
DNS configurations, which are a sequence of flat records.
Symbolic execution on a monolithic model of BGP is
infeasible due to path explosion: the number of paths grows
exponentially in the model size. Thus a monolithic model will
have a prohibitively large number of paths, allowing only a
small subset of protocol behaviors to be tested in practice.

We address this challenge via modular exploration. Instead
of a single monolithic model of BGP, we built separate
models for key aspects of BGP. Figure 4 shows the BGP
route selection process. When a route is received, a route map
defined in the BGP configuration is used to determine whether
the route is permitted or denied (as shown on the left of the
main router); this is called route filtering. Subsequently, the
best route to a destination is selected and installed in the RIB;
this is called the decision process. Finally, the selected route
is sent to neighbors after passing through a route filtering step.

Leveraging this structure, we built separate models for route
filtering and for the decision process. In general, if there are
m possible execution paths for route filtering and n paths for
the decision process, then there can be m·n paths for a model
that combines them, whereas in our approach, there are only
m + n paths to explore. Modular exploration also enables
us to tailor each model’s symbolic inputs to only the parts of
BGP that are relevant to that feature, which further simplifies
each model and makes test generation feasible. For example,
route filtering involves a BGP route map and an input route
to be processed, but it is independent of the state of the router,
which, therefore, need not be modeled. On the other hand, the
BGP decision process depends on the current router state but
is independent of the route maps in the BGP configuration.

Figure 5 overviews the architecture of MESSI. The sym-
bolic module contains separate executable models for the BGP
decision process, route filtering, route aggregation, and forms
of protocol dynamics, which we discuss in turn in the following
subsections. As shown in the figure (and discussed further be-
low), each such model has a different set of inputs and outputs
tailored to that feature’s role in the overall BGP process. In
each case, we use Zen to generate concrete test cases (indicated
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Figure 5: The architecture of MESSI

in the figure as the Symbolic Module), which we then execute
on black-box BGP implementations. A particular challenge
for test generation of route filtering is the need to generate
regular expressions, as these are commonly used in route maps
to match on communities and AS paths in routes. We have
developed a special technique to handle regular expressions
(shown as the Regex Module) that we describe in detail below.

3.2 Decision Process
As shown in Figure 5, we model the decision process as a
function that takes two routes to a single destination and
returns the route that is more preferred. We argue that these
inputs are sufficient to identify any error in the BGP decision
process. The decision process is used whenever a router
receives an incoming route announcement and decides to
permit it (possibly with some modifications). At that point,
the newly permitted route is compared against the current
best route to that destination in the RIB to determine whether
the RIB should be updated. Our model captures exactly this
scenario, where one of the two input routes models the current
best route in the RIB and the other models the new route.

The BGP decision process involves comparing the various
attributes of the two given routes in a particular order of
precedence, in order to decide which route is more preferred.
For example, first, the attribute called “local preference” of
the two routes is checked, and the route with the higher local
preference is preferred. If the local preference values are equal,
then the BGP decision process moves on to check the values
of other attributes, and so on.

Our Zen model is, therefore, simply a function that takes
two routes and compares their attribute values in the correct
precedence order to determine which route is preferred.
Marking the two routes as symbolic ensures that Zen will
explore all paths through this function and, for each path,
will generate two concrete input routes that cause execution

1 Zen<Route> Compare(Zen<Route> r1, Zen<Route> r2){
2 // compare attributes
3 var gtLp = r1.LocalPref() > r2.LocalPref();
4 var neLp = r1.LocalPref() != r2.LocalPref();
5 var ltLen = r1.PathLen() < r2.PathLen();
6 var neLen = r1.PathLen() != r2.PathLen();
7 ...
8 var ltRid = r1.RouterId() < r2.RouterId();
9 var neRid = r1.RouterId() != r2.RouterId();

10
11 // compare the routes
12 var ridCmp = If(ltRid, r1, If(neRid, r2, r1));
13 ...
14 var lenCmp = If(ltLen, r1, If(neLen, r2, ...));
15 var lpCmp = If(gtLp, r1, If(neRid, r2, lenCmp));
16 return lpCmp;
17 }

Figure 6: Pseudo-code for BGP decision process.

to follow that path. For example, Zen will generate a pair of
input routes for the case when the first route has a higher local
preference than the second one, another pair for the case when
the second route has a higher local preference than the first
one, and many pairs where the local preferences of the two
routes are equal so that other paths will be explored.

In Figure 6, we show the pseudo-code for the BGP decision
process. Note that we assume that the always-compare-med
and compare-routerid flags are enabled. Turning the first
flag on allows us to have a complete ordering between routes.
However, we can easily modify our model to accommodate
other comparison modes for MED. In Lines 3 to 9, we first
compare the routes’ attributes according to the decision
process preference. Next, we order these decisions Lines 12
to 15 by comparing the attributes in the correct order. We build
the hierarchy of attribute comparisons in a bottom-up fashion
using nested if-then-else expressions. If the local preference of
the first route is higher, then we return the first route. Otherwise,
if the second is preferred, we return it instead. If they are
equal, then we move on to the AS path length. In this way, we
mimic the BGP decision process by sequentially comparing
the attributes of the two routes in order of preference.

3.3 Route Filtering
To test route filtering, we employ a hybrid approach, which
leverages both an executable model for symbolic execution
and a special approach to support generation of regular
expressions. We describe each in turn.

3.3.1 Zen Model

As shown in Figure 5, we model the route filtering process
in Zen as a function that takes two inputs: a configuration,
specifically a route map and associated definitions like
prefix lists and community lists; and an incoming route. The
route filtering process applies the route map to the route to
determine if the route is permitted or denied; in the case that it



is permitted, the route is also modified as specified in the route
map. Notably, route filtering is stateless: the processing of an
incoming route by a route map is independent of the current
router state, such as the contents of the RIB. Hence there is
no need to model that state. The previous section showed
examples of pairs of route maps and routes that MESSI
automatically generated from its route filtering model.

In general, a route map consists of one or more stanzas.
Each stanza consists of an action (permit or deny), zero or
more match statements, which indicate the conditions under
which the stanza matches the input route, and zero or more set
statements, which update the incoming route if it is permitted.
Stanzas are processed sequentially until finding a stanza that
matches the input route, in which case the corresponding
action and set statements are applied. Route maps can also
contain more sophisticated control flow; for instance, stanzas
can be chained together, with one falling through to the next,
and route maps can invoke other route maps.

Handling the full complexity of route maps described
above is simply infeasible. Therefore, we take our cue from
prior work on model-based testing for protocols, which
found that small configurations were sufficient to surface
many interesting implementation errors [33]. Our Zen model
considers a route map to consist of exactly one stanza. While
this is a significant simplification, it nonetheless creates a rich
space of policies to explore. Within a stanza, we allow any
number of match statements, and they can match on all of the
different attributes of a route. We similarly allow any number
of set statements, which can update those attributes in various
ways, for example, adding and deleting communities. Finally,
as shown in the earlier examples, our model also includes
auxiliary structures like prefix lists and community lists, which
can be generated by Zen and referred to in route maps.

3.3.2 Generating Regular Expressions

One significant source of complexity in route maps that we
cannot avoid is the use of regular expressions to match on
communities and AS paths. Their usage is ubiquitous, and reg-
ular expressions are also a common source of errors; thus, any
test generation approach for route maps must support them. A
naive approach would be for our Zen model to simply include
the logic for checking whether a string satisfies a regular
expression and ask Zen to symbolically execute this code. How-
ever, doing so would dramatically explode the number of paths
through our model (since, for example, it would include the
logic to convert a regex to a DFA). Further, solvers [21] cannot
handle the theory of strings with symbolic regular expressions
since they can describe non-regular languages [46].

Instead, we developed a hybrid approach to generating
route maps containing regular expressions that avoids the need
to symbolically execute the regex matching process while also
obtaining useful coverage guarantees for both regexes and the
strings that are matched against them. First, we exhaustively
enumerate regex structures up to some size (a form of

Algorithm 1 Enumerating regexes at a given level
1: function REGEXENUMERATOR(Rn−1)
2: Rn← []
3: for i in range(len(Rn−1)) do
4: r←Rn−1[i]
5: Rn←Rn+[r,(r)∗,(r)+,(r)?]
6: for s in (Rn−1[i :]) do
7: Rn←Rn+[(r)|(s)] ▷ Alternation
8: Rn←Rn+[(r)(s)] ▷ Concatenation
9: end for

10: end for
11: return Rn
12: end function

coverage), which are regexes that are parameterized by the
base regexes within them. Next, we employ random generation
to produce the base regexes for each regex structure, yielding
concrete regexes. Third, for each such regex we generate a set
of positive and negative example strings that together cover
all nodes and edges in the DFA representation of the regex.
Finally, these regexes and their associated examples are given
as concrete inputs to our Zen model to use when building route
maps and routes. Next, we describe these steps in more detail.

Regex enumeration algorithm. We are inspired by work in
enumerative combinatorics to count [38] (not generate) regular
expressions. Similar ideas can apply to other complex protocol
structures for which a recursive formulation is feasible. We
use the algorithm shown in Algorithm 1 to enumerate regex
structures exhaustively up to some level n, given the regex
structures up to level n−1.

We use the character ‘x’, which represents a regex to be
filled in later, as the sole regex structure at level 0. According
to the algorithm, level 1 will consist of the regex structures
{x, (x)*, (x)+, (x)?}. Similarly at level 2 we will have regex
structures like (x*)|(x+), (x+)?, and so on. The number of
regex structures at every level increases exponentially, so we
stop at level 3 with 4686 such structures.

At the nth level the complexity of Regex Generation is
O(R2

n−1) where Rn−1 is number of regexes generated at the
(n− 1)th level. If we solve the recursion T (n) = T (n− 1) ∗
T (n−1) then we get T (n)=O(22n

)
Random regex generation. For each of these structures,

we randomly generate valid community regexes to fill in their
placeholder values ‘x’, via the following grammar:

T ::= (E1 | ... | Ek) (top-level-regex)
E ::= ^S$ (end-to-end-regex)
S ::= (C1...Ck) (sequence-regex)
C ::= P :P (community-regex)
P ::= (B1...Bk) (community-segment-regex)
B ::= R | R* | R+ | R? (base-regex)
R ::= [N-N] (regex-number-range)
N ::= 0 |1 | ... |9 (number)
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Figure 7: Node Coverage on the DFA: To generate a positive
example that covers state 5 in the above figure, we first find a
path P1 (dotted maroon) from the starting state 1 to state 5 .
In this case, it is 1 → 3 → 5 . Then we find another path
P2 (dashed brown) from state 5 to the accepting state 10 .

An example random regex generated from this grammar is:

(^[2-4]+[3-5]*:[2] [3]:[1-2]?$)|(^[5-6]+:[4]*$)

After plugging these randomly generated strings into the regex
structures generated by the enumeration algorithm, we obtain
a set of concrete regexes.

String generation For each regex that the Zen model uses
in a community list, we require both positive and negative
examples to use as concrete community values in routes, and
we would like to choose these examples in a way that covers
many interesting behaviors of the regex. We have devised a
simple and effective approach to doing this, through efficient
graph algorithms on the DFA representation of each regular
expression. Specifically, we generate positive examples that
together cover all nodes as well as all edges of the DFA that
are reachable, and similarly for the negative examples.

Figure 7 illustrates the approach on an example DFA. Sup-
pose we wish to identify a positive example that includes node
5 . First, we use depth-first search (DFS) to find a path from

the start node 1 to node 5 (shown in the figure as the dotted
path). Then we use DFS again to find a path from node 5 to the
accepting node 10 (the dashed path). Each DFA edge is labeled
with the input character that causes that edge to be traversed, as
usual (not shown in the figure). Hence, we traverse the concate-
nation of these paths to collect these labels, yielding a positive
example. We iterate this process over all nodes, keeping track
at each iteration which nodes have already been covered. We
use an analogous approach to cover each edge, using DFS to
identify a path from the start node to the edge’s source and a
path from the edge’s target to the accepting node. Finally, to
generate negative examples, we use the same procedure but on
the DFA that represents the complement of the original regex.

3.3.3 Regex Testing

Using the algorithms discussed above, we obtain a total of
253,958 test cases, each consisting of a regular expression and
a string that should be either a positive or negative example.
We use these test cases in two ways. First, we generate a
route-filtering test case for each one to test the regex-matching

logic of the BGP implementations. For example, given the
regex ^[2-4]+[3-5]*:[2]+$ and positive example 2335:22,
we generate the following route-map, which accepts routes
whose community matches our regex, as well as an input route
whose community value is [2335:22]:

ip community−list 101 permit ^[2−4]+[3−5]∗:[2]+$
route map FILTER_ROUTES permit 10

match community 101

Second, we randomly choose a small subset of the generated
regexes (4 in our experiments) and “hardcode” these into our
Zen model. For each such regex, we also randomly choose
a small set (3 in our experiments) of associated positive and
negative examples to use in community lists. When symbolic
execution explores a path that successfully matches the input
route against a community list, Zen selects one of the pre-
determined regexes to use in the generated route map and one
of its positive examples to use in the generated input route. This
allows us to generate complex tests involving regexes (e.g. tests
with multiple match and set statements), without modeling and
symbolically reasoning about regex matching logic. The Zen
model also uses this pool of regexes and examples to generate
tests for community deletion.

We have described our regex generation process specifically
for community regexes, but we use a similar approach to
generate regexes over AS paths and the corresponding
positive and negative example AS path values. Note that
each component of our hybrid approach (symbolic, random,
enumerative) has coverage guarantees, although of different
forms; one can increase test coverage by increasing resources.

3.4 Route Aggregation
As shown in Figure 5, we model the route aggregation process
in Zen as a function that takes two routes, the aggregate prefix,
as well as some aggregation-specific flags, and produces (pos-
sibly multiple) output routes. Our Zen aggregation model first
checks whether each of the two incoming routes matches the
aggregation prefix. Based on this information and the values
of various aggregation-specific flags, it then determines the
set of routes to return. Aside from the matching-med-only
flag, another example flag is summary-only, which, if set,
indicates that only the aggregate route should be advertised.
Conversely, if this flag is not set, then both the individual
routes and aggregate route should be advertised.

3.5 Testing BGP Dynamics
BGP routers must constantly respond to changes in the
environment — a link can go down, a route can be withdrawn,
a route policy can be updated, etc. Efficiently handling
these kinds of changes is challenging for developers. We
have observed that erroneous incremental computation
is at the heart of many identified implementation bugs
(e.g., [1, 11, 12, 23]). We have developed an approach in



Route Map

ip community-list 1 permit 2:5
route-map RMAP permit 10
  match local-preference 200
  match community 1

LP=200,
AS-path=[100,200],

MED=3,
COM=2:5

Permit

LP=100 COM=4:5
Deny Deny

Figure 8: Changes to route map to alter the route-map decision.

MESSI to generate tests to identify incorrect incremental
computation. We consider how the route filtering process is
affected by a limited form of dynamics: either a modified route
map or a modified (withdrawn and newly received) route.2

The setup for testing a modified route map is shown in
Figure 8. Now our Zen model takes three inputs: an original
route map, a route to match against, and an updated route map.
The goal is to produce test cases whereby the route matches
the original route map but not the updated one and vice versa.

Figure 9 similarly shows the setup for testing the case of mod-
ified routes. Now a test case consists of a route map, an original
route, and an updated route, and we require that the original
and updated routes are treated differently by the route map.

The key challenge in generating tests (for even the very
limited dynamics we focus on) is the large size of the search
space. For example, consider the Zen model for testing
route-map changes, which takes as input two route maps
and a route. If we perform symbolic execution naively, Zen
must explore the space of all possible pairs of route maps that
behave differently on the given route. This space is too large,
so we will end up exploring a small subset of the space, but
with no clear guarantees on coverage.

Instead, we leverage Zen to perform a form of exhaustive
local search. Specifically, we define a distance metric between
route maps, which intuitively represents the number of
changes to individual stanza actions and match statements
that must be made to transform one route map into another
akin to Hamming distance. Then we ask our Zen model to
only generate pairs of route maps that are within distance k
of one another (k=1 in our experiments), which can be done
exhaustively in a reasonable amount of time.

For example, consider the following route map:

ip community−list 1 permit [1−2]+:[1−2][3]∗
route map FILTER_ROUTES permit 10

match community 1

We consider changing the action from permit to deny as
a cost of one. Similarly, changing the regex in community
list 1 to another regex is considered a cost of one. Notably, we
treat match or set statements on different attributes as being
infinitely far apart. For example, if the match community

2Our use of “small step” BGP dynamics should not be confused with
“multi-step” BGP dynamics that manifest in phenomena such as BGP looping
and route flap damping.

Route Map

ip community-list 1 permit 2:5
route-map RMAP permit 10
  match local-preference 200
  match community 1

LP=200,
AS-path=[100,200],

MED=3,
COM=2:5 Permit

LP=100 COM=1:2
Deny Deny

Figure 9: Dynamic Testing by changing route attributes to
alter the route-map decision

statement in our example is changed to a match metric
statement, then the distance is infinite. In short, our distance
metric models the kinds of local changes that network
operators often make to route maps, in our experience, and
it also makes symbolic test-case generation feasible.

We use a similar approach to test a modification to the
incoming route. Namely, we define a distance metric on route
announcements, where each attribute modification has a cost
of one, and the Zen model exhaustively explores pairs of
routes that have distance at most k (k=1 in our experiments).

We also tested the dynamics of route aggregation similarly,
where we allow changes to either the route attributes in one
setting or the values of aggregation-specific flags and aggre-
gation prefix (config) in another setting. The distance metric is
defined in a similar fashion as above: changing the aggregate
prefix, the flags, or a route attribute is considered a cost of one.
In our experiments, we constrained this cost to be at most 1.

While supported by our model, increasing distance beyond
1 increases both test cases and generation time exponentially.

3.6 Vendor-specific Translators
BGP is a complicated protocol, and vendors tend to implement
their own configuration languages, which differ in syntax,
semantics, and features. For instance, both FRR and Quagga
support prefix lists, community lists, and AS path lists. How-
ever, GoBGP supports sets of prefixes, communities, and AS
paths, as opposed to lists. The fundamental difference between
these two representations is that elements within a list have
sequential priority, which allows for overlapping permitted
and denied ranges, whereas set members are unordered. We
address these differences through special-purpose translators
that convert our Zen-generated tests to the input language of
a particular implementation.

As an example, suppose Zen generates the following prefix
list, denoted in FRR syntax:

ip prefix−list PR seq 1 deny 10.1.0.0/15
ip prefix−list PR seq 2 permit 10.0.0.0/8 ge 15 le 18

Note that the prefix on line 1 is in the prefix range on line 2.
Our GoBGP translator converts this list into the following set
of all prefix ranges permitted by line 2 but not denied by line 1:

NAME PREFIX
PR 10.0.0.0/8 16..18

10.2.0.0/15 15..15



Implementation Language Description

FRR [27] C Used by ISPs, DCs
Quagga [45] C Used in Linux
GoBGP [28] Go Used by ISPs, research
Batfish [3, 26] Java Open-source simulator
Fastplane [40] C++ Fast BGP simulator
BIRD [13] C Dynamic IP routing daemon

Table 1: Implementations tested by MESSI.

10.4.0.0/14 15..15
10.8.0.0/13 15..15
10.16.0.0/12 15..15
10.32.0.0/11 15..15
10.64.0.0/10 15..15
10.128.0.0/9 15..15

The translator produces prefix sets whose elements are
mutually exclusive, which simplifies translation; but it implies
we never test GoBGP prefix sets with overlapping elements.

Note that our test cases cover a broad range of settings
and attributes, some of which might not be supported by
every implementation. For example, GoBGP does not support
setting the MED attribute or the removal of AS numbers
from an AS path, while both FRR and Quagga do. We
also did not find documentation for route aggregation in
GoBGP, while both FRR and Quagga have extensive support
for it with special flags such as matching-med-only and
summary-only. Similarly, BIRD only offers basic support
for regular expressions. Thus while translating test cases for
a specific implementation, we ignore inapplicable tests.

3.7 Implementation Testing

We use an automated testing setup that takes as input the trans-
lated test cases and sets up a network of Docker containers,
one of which runs the implementation under test. The other
containers use ExaBGP to send route announcements to this
container. We parse the RIB of the implementation under test
to obtain the installed routes that result from each test; we
consider a test to fail if an implementation’s RIB differs from
that expected by our model. We group failed tests to reduce
the manual effort of debugging. During test generation, our
Zen code produces a tag for each test case based on the path
it traverses in the code, which roughly indicates the kinds of
match and set statements that the test exercises. Failed tests
are grouped into buckets by tag, and one representative test
from each bucket is manually investigated to confirm whether
it is a bug or not. This approach is analogous to the bucketing
technique from our prior work on test generation for DNS [33].

FRR [27]
Community list AND/OR matching semantics Fixed
Filtering routes tagged with Internet Community Fixed
Delete Community Regex not working Fixed
Route map permits all routes if internet commu-
nity permitted

Fixed

Prefix list matches mask greater than or equals Acked
Changing MED results in incorrect aggregation Fixed
Route map change from permit any prefix results
in incorrect route installation

Fixed

Quagga [45]
Community list matching AND/OR semantics Found
Filtering routes tagged with Internet Community Found
Delete Community Regex not working Found
Route map permits all internet community routes Found
Changing MED results in incorrect aggregation Found

GoBGP [28]
Prefix set matching with zero masklength but
nonzero range

Acked

Withdrawn route is still advertised Fixed
Route installed in RIB with incorrect MED Fixed

Batfish [3, 26]
Space in Community regex giving error Acked
Internet community route filtering Found

Fastplane [40]
Set MED not advertised Found
AS prepend with 0 Found
AS path regex parsing issue Found
AS path regex matching issue Found
Community Regex matching issue Found

Table 2: Bugs found for different BGP implementations.

Stats Decision Filtering Aggregation Dynamics

Tests 18 142916 128 11246
Failed 5 457 0 12

Buckets 2 204 0 4
Bugs 1 17 0 4

Acked 1 7 0 3
Fixed 1 4 0 3

Table 3: Experimental results.

4 Results

4.1 System Overview

We generate tests for each module described earlier using the
corresponding Zen model. We test implementations using
Docker [42] by creating working Docker images of each
implementation. For route-map filtering, test generation takes
around 2 days; hence, we pipelined test generation by testing
the implementations. We used Python scripts for vendor-
specific translation (§3.6) and response grouping (§3.7).



4.2 Experiments

We tested six BGP implementations: FRR, Quagga, GoBGP,
Batfish, Fastplane, and BIRD. Table 1 shows their source code
language and a brief description of their focus or how they are
used. Table 2 catalogues all the bugs we found. In Table 3, the
first three rows show the number of Zen-generated test cases
, failed tests and buckets respectively. The last three rows list
the number of bugs found, acknowledged and fixed across
all implementations respectively. We found at least 2 bugs
in each of the 5 implementations except BIRD, in which we
found no bugs. Many of our identified bugs relate to regexes
or dynamics. However, BIRD has rudimentary support for
regexes, making many of our test cases inapplicable. Further,
unlike FRR and Quagga, BIRD restarts the daemon upon
config changes, making incremental update errors unlikely.

We next describe the results for each module individually.
Decision Process: For testing the decision process of BGP,

we made a model of the BGP decision algorithm in Zen. It gen-
erated 18 test cases corresponding to every path (pseudocode
shown in Figure 6). We found 1 bug in the decision process
of GoBGP and found 4 discrepancies across FRR and Quagga,
which revealed some implementation-specific behavior – i.e.,
for Quagga to choose the route with lower router-id, the bgp
bestpath compare-routerid flag has to be enabled; by
contrast, this is enabled by default for FRR.

Route Filtering: To test BGP route filtering, MESSI
simultaneously generates an incoming route along with an
inbound routing policy (route map) as a test case. A route map,
in general, can have multiple stanzas, with each stanza having
its own match and set statements. However, as stated earlier,
MESSI generates tests with only one stanza.

We encoded the route map evaluation logic (explained in
§3.3) in Zen for test generation. We also restrict each field
of the route and the route map with some validity constraints.
The regex testing was discussed earlier in § 3.3.3. MESSI
generated 4686 regexes (up to level 3) using enumeration
Algorithm 1 and generated positive and negative examples
using the coverage algorithm (Figure 7) with a total of 253,958
test cases for regex testing.

In the route map, we only allowed prefix lists to have 3
entries. We did this not only to reduce the search space but
also to ensure that we had test cases that could check whether
the BGP implementations were following the sequential order
while matching entries within the prefix list. IP addresses were
limited to unsigned integers within a certain specified range.
This is a necessary step so that Zen does not generate invalid IP
addresses such as 0.0.25.203 that do not follow CIDR rules.

Second, for ease of computation, we represented subnet
masks in their unsigned integer form. The primary reason for
doing this is that Zen does not support shift operations like
« and ». Thus instead of representing the masks internally
as a number in the range 0-32, we converted them to their
corresponding unsigned integers. This made it easier to AND

1 Zen<bool> RMapDynamics(Zen<Route> route,
2 Zen<RouteMap> r1, Zen<RouteMap> r2)
3 {
4 // Limit maximum distance to 1
5 var cond1 = GetDifference(r1, r2) <= 1;
6 // get decisions from the two route maps
7 var dec1 = r1.Match(route);
8 var dec2 = r2.Match(route);
9 // check whether they have different results

10 var cond2 = Not(dec1 == dec2);
11 return And(cond1, cond2);
12 }

Figure 10: Constraints for route map dynamics

the subnet masks with the IP addresses to get the prefix value.
We also constrained the prefix mask, LE, and GE values

to obey the rule mask <= GE <= LE. Additionally, to avoid
repetition and redundancy, all entries in the prefix list were
made unique. AS path and Community lists were limited to
1 entry each. This tactic was again taken to reduce the number
of test cases. Finally, local preference and MED values were
restricted within a pre-specified range.

This setup generated 142,916 tests, revealing 15 previously
unknown bugs across the tested implementations.

Route Aggregation: MESSI uses the model described in
§3.4 to simultaneously generate the aggregate prefix, the flags,
and two individual prefixes for a test case.

Zen generates 128 test cases to cover all paths in this
module. We did not find any bugs in the route aggregation
logic across all implementations.

BGP Dynamics: We also tested the dynamics (explained
in §3.5) related to route map filtering and route aggregation.
The dynamics of route map filtering are further classified into
two categories - (1) dynamic changes in the route map and (2)
dynamic changes in the incoming route. In the experiments,
we use the distance metric (how close route maps or routes
are to each other) defined in §3.5.

For (1), we wrote a wrapper method around the route map
evaluation module to generate two route maps and an incoming
route, subject to the constraints that the route maps should
differ by, at most, a unit distance, and one of them should allow
the route while the other denies the route. This setup generated
7404 test cases. Figure 10 shows the logic for implementing
the wrapper. First Line 5 limits the maximum distance between
two route maps to 1. Next, Lines 7 to 8 evaluates the incoming
route against the two route maps. Finally, in Line 10, we check
to see whether the two decisions are different. For a particular
test case, both these conditions must be satisfied.

For (2) we wrote another Zen wrapper to simultaneously
generate two routes and one route map. The constraints it is
subjected to are: first, the two routes should differ by at most a
unit distance; and second, the route map should give different
decisions for the two routes. This setup generated 28 test cases.

We also tested route aggregation dynamics, simultaneously
generating configs (aggregate prefix + flags) and incoming



routes for two scenarios: changing routes and changing con-
fig. Every change is of unit distance. In both scenarios, our
constraints ensured the published set of routes are different for
the two different settings. In the changing routes scenario, we
altered one route keeping a constant config. Conversely, in the
changing config scenario, we modified the config while main-
taining identical routes. This setup generated 3814 test cases.

Additionally, with each test case, we tested the effect
of withdrawal. Dynamic testing revealed 4 bugs across all
implementations.

4.3 Example Bugs
In this subsection, we provide more examples of the bugs that
MESSI identified, in addition to the ones presented in §2.

Bug #4: The following test was generated by MESSI:

Route Map:
ip community−list 1 permit internet
route map FILTER_ROUTES permit 10

match community 1
Route: 100.10.0.0/16, COM = [0:11]

In the above test case, the route map is configured in a
way that only permits routes with the Internet community.
Although it is expected that only routes containing the internet
community (0:0) will be permitted, we observed that FRR
and Quagga permit all incoming routes due to a bug in
handling the community list. In the source code, there was
a code snippet that was setting the decision as permit if
internet community was contained in the community list.
The developers in FRR acknowledged and fixed this bug.

Bug #5: MESSI generated the following test case:

Route Map:
ip community−list 1 permit 0:0
route map FILTER_ROUTES permit 10

match community 1
Route: 100.10.0.0/16, COM = [0:0]

Here, the route map permits routes tagged with 0:0
(internet) community, and the incoming route has commu-
nity 0:0. Therefore, the expected decision is PERMIT. For this
particular test case, we observed some discrepancies across
different implementations. When we ran this test on FRR,
it denied the route, although Fastplane and Batfish allowed
it (as expected). If we use internet in the route map, and
the incoming route has 0:0 as a community, then FRR gives
the expected output. But, Batfish doesn’t give the expected
output. When we filed this issue, FRR developers fixed it by
deprecating the internet community. We have reported this
to the Batfish developers and are waiting for their response.

Bug #6: In another test case generated by MESSI the
route map permits all routes that match with default route
0.0.0.0/0 with a mask length greater than or equal to zero.
But in FRR, we observed that it does not work. It works as
expected in Batfish and Fastplane. However, ge 1 does work,
and it was given as a workaround by the FRR developers.

Route Map:
ip prefix−list PFXL seq 5 permit 0.0.0.0/0 ge 0
route−map FILTER_ROUTES permit 10

match ip address prefix−list PFXL
Route: 100.10.0.0/16...

The documentation does not explain why ge 0 does not
work. Neither does FRR throw any error if ge 0 is provided
in the configuration. GoBGP had a similar issue: if there is
a prefix set with prefix 0.0.0.0/0 but with a range on mask
length, it should match all routes within that mask length range
but did not match a prefix generated by MESSI. The GoBGP
developers acknowledged this and will hopefully fix this soon.
The failed test case generated by MESSI was:

prefix−set ps1:
ip−prefix: 0.0.0.0/0, mask−range: 10..10

policy−definitions:
conditions:

match−prefix−set: ps1
Route: 100.10.0.0/10

Bug #7: A route map contains a set statement that deletes
specific communities from routes that match with some
community list. The route communities are not deleted as
expected because of an additional delete tag that was added
to the name of the community list, which made the delete
community not work. We found this bug in Quagga and in
earlier versions of FRR (fixed later). The failing test case was:

Route Map:
ip community−list 101 permit [1−2]+:[3−4]
route map FILTER_ROUTES permit 10

set coom−list 101 delete
Route: COM = [11:4 0:1]

The expected result is the deletion of community 11:4 from
the route but it did not delete any communities.

Bug #8: The following test was generated by MESSI:

Route Map:
ip prefix−list PFXL seq 5 permit 99.0.0.0/8 le 31
route−map FILTER_ROUTES permit 10

match ip address prefix−list PFXL
Route: 99.10.11.0/24, MED = 4

This test case failed for GoBGP and Fastplane. Here, the
incoming route has a MED 4, and the inbound route map
accepts the route without modifying it. But the installed route
had MED 0. This error was fixed in GoBGP and is under review
by the Fastplane developers. The same test case was also
generated by our decision process setup.

Bug #9: Another test case generated by MESSI revealed
a bug in Fastplane. The test case is as follows:

Route Map:
route−map FILTER_ROUTES permit 10

set as−path prepend 0 100
Route: AS−path = 200



Here the inbound route map has a set statement that should
add AS 0 and AS 100 to the AS path of the route, but it
only appended AS 100 to the existing AS path. All other
implementations appended it correctly. This issue is likely
due to a highly compact zero-terminated representation that
Fastplane uses to represent the AS path for BGP routes.

5 Limitations

Our model currently focuses on RFC compliance errors only;
we do not consider performance bugs or coding bugs such as
overflow errors. We do not test route reflectors, confederations,
reserved ASNs, and well-known communities, and some regex
features such as constraining a route’s community set size.

Modular exploration does not test possibly complicated
interactions among multiple BGP features. However, the mod-
ular approach is more scalable, allowing each feature to be
tested extensively; it also allows easily adding support for new
features without changing existing portions of the model sig-
nificantly. We can also use our approach to test the integration
of multiple modules when desired.

MESSI automatically configures routers through the com-
mand line interface. Certain bugs (e.g., §2.1) would not be
revealed by alternative testing approaches, such as directly
writing the configuration file. In future work, we could employ
multiple test setups to widen the scope of errors found.

6 Related Work

We classify related work into the following categories.
Model-based verification: This approach uses a formal

model to verify software. For example, Bagpipe [51] verifies
BGP configurations against a formal model of BGP. Verifi-
cation scales for configurations but not for implementations.

Fuzz testing: Fuzz testing is widely used for software
testing in general [2, 14, 37, 52] and specifically for BGP
implementations (e.g., [20, 22]). Although fuzzers are
effective at finding parser bugs, they are less effective at
finding behavioral bugs such as those described in §2.

Symbolic execution: Symbolic execution invokes SMT
solvers to generate test cases for as many execution paths of a
program as possible (e.g., [17, 29, 30]). BGP implementations
contain thousands of lines of low-level code, which makes
symbolic execution infeasible in practice.

Model learning: Recent work uses active learning to cre-
ate abstract models from black-box protocol implementa-
tions [25]; errors are detected by comparing the models of
different implementations. Compared to our approach, the
drawback is the need to learn a model for each protocol imple-
mentation; we generate tests for arbitrary protocol implemen-
tations from a single reference model. However, their models
can be used for purposes other than error detection.

Model-based testing: This general category uses an abstract
model of a system to generate tests [16,44,49]. MESSI extends
the SCALE model-based testing approach for DNS implemen-
tations [33] to account for BGP’s complexity and statefulness.

Enumerative Testing: This approach generates inputs up to
a given size that meet a specified predicate [15]. We use a form
of enumeration to generate regexes for BGP configurations.

7 Future Work and Conclusion

We plan to extend MESSI to test other BGP features such
as route redistribution and route reflection. We also aspire
to automatically derive the constraints from the BGP RFCs,
say using large language models like GPT-4, to alleviate the
current burden of manually building the model.

The ideas in MESSI should extend to other stateful
protocols with complex structures, as well as to other software
systems, such as web servers. BGP has a comparatively simple
stateful model: if one excludes dynamics, the forwarding
of a route depends only on the previous best stored route.
However, the state of other protocols may depend on many
past messages; this raises the question of efficiently driving
such protocols to specified states. MESSI’s combination
of symbolic, random, and enumerative testing of structures
should extend to other protocol structures.

A common slogan when an Internet outage occurs is:
“It’s always DNS . . . except when its BGP” [10] because
the majority of major Internet incidents [10] are caused
by bugs in DNS (zone files or implementations) or BGP
(configurations or implementations). Previous work targets
DNS zone file bugs [32], DNS implementation bugs [33],
and BGP configuration bugs (e.g., [26]); MESSI fills the
remaining gap by targeting BGP implementation bugs.

In terms of ideas, MESSI adds techniques to the repertoire
of model-based testing approaches for protocol implementa-
tions (e.g., SCALE [33]) to deal with: 1. complexity (modular
exploration), 2. protocol statefulness (generating both the best
route and a new route); 3. implementation statefulness due to
incremental computation (generating two configurations that
differ by a single change); 4. complex structures (combining
symbolic with enumerative testing for regexes).

Inspired by the famed soccer player, MESSI tries to attack
the goal of BGP testing from many angles, generating over
150K test cases automatically that have already led to the
discovery of 22 new bugs in 5 BGP implementations.

Acknowledgements

We thank our shepherd Eric Eide and the anonymous reviewers
for their insightful comments. We also thank the BGP devel-
opers for their feedback on the bug reports. This work was
partially supported by NSF grant CNS-1901510 and by Cisco.



References

[1] About the real-time effect of BGP policy configuration.
https://github.com/osrg/gobgp/issues/2164.

[2] American fuzzy lop. https://lcamtuf.coredump.cx/
afl/.

[3] Batfish network configuration analyzer. https:
//github.com/batfish/batfish.

[4] Ryan Beckett. Zen. https://github.com/microsoft/
Zen/tree/master.

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pages 155–168, New York, NY, USA,
2017. ACM.

[6] Ryan Beckett and Ratul Mahajan. A general framework
for compositional network modeling. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks,
pages 8–15, 2020.

[7] Ann Bednarz. Global microsoft cloud-service outage
traced to rapid bgp router updates. Network World, 2023.

[8] BGP ‘address-family ipv4’ sub-configuration
is not shown in the running configuration.
https://quickview.cloudapps.cisco.com/
quickview/bug/CSCvk45884.

[9] BGP bug bites juniper software. https:
//www.networkworld.com/article/2289950/bgp-
bug-bites-juniper-software.html.

[10] BGP, DNS, and the fragility of our critical systems.
https://www.f5.com/labs/articles/cisotociso/
bgp-dns-and-the-fragility-of-our-critical-
systems.

[11] BGP route-map work incorrectly when prefix-
list modify from deny any to permit. https:
//github.com/FRRouting/frr/issues/13007.

[12] BGPD: aggregate-address with summary-only and
matching-med-only does not work when metric is
changed. https://github.com/FRRouting/frr/
issues/11912.

[13] BIRD routing software. https://
bird.network.cz/?get_doc&v=20&f=bird-5.html.

[14] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages
1032–1043, 2016.

[15] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko
Marinov. Korat: automated testing based on java
predicates. In Phyllis G. Frankl, editor, Proceedings of
the International Symposium on Software Testing and
Analysis, ISSTA 2002, Roma, Italy, July 22-24, 2002,
pages 123–133. ACM, 2002.

[16] Josip Bozic, Lina Marsso, Radu Mateescu, and Franz
Wotawa. A formal tls handshake model in lnt. arXiv
preprint arXiv:1803.10319, 2018.

[17] Cristian Cadar, Daniel Dunbar, Dawson R Engler,
et al. Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209–224, 2008.

[18] Tom Strickx Celso Martinho. Understanding how face-
book disappeared from the internet. Cloud Flare, 2021.

[19] Cisco ios xe software bgp resource public
key infrastructure dos vulnerability. https:
//bst.cisco.com/quickview/bug/CSCvz55292.

[20] Stanislav Dashevskyi. A simple BGP fuzzer
based on boofuzz. Github, 2023. https:
//github.com/Forescout/bgp_boofuzzer.

[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[22] Donatas Abraitis et al. Donald Sharp. fuzzing tar-
gets and supported fuzzers available in frr. Github,
2023. https://docs.frrouting.org/projects/dev-
guide/en/latest/fuzzing.html.

[23] eBGP doesn’t withdraw routes to other ebgp peers when
peer goes down. https://github.com/osrg/gobgp/
issues/2208.

[24] Nick Feamster and Hari Balakrishnan. Detecting bgp
configuration faults with static analysis. In Proceedings
of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2, NSDI’05,
pages 43–56, Berkeley, CA, USA, 2005. USENIX
Association.

[25] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and
Alexandra Silva. Prognosis: closed-box analysis of
network protocol implementations. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, SIG-
COMM ’21, page 762–774, New York, NY, USA, 2021.
Association for Computing Machinery.

https://github.com/osrg/gobgp/issues/2164
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://github.com/batfish/batfish
https://github.com/batfish/batfish
https://github.com/microsoft/Zen/tree/master
https://github.com/microsoft/Zen/tree/master
https://quickview.cloudapps.cisco.com/quickview/bug/CSCvk45884
https://quickview.cloudapps.cisco.com/quickview/bug/CSCvk45884
https://www.networkworld.com/article/2289950/bgp-bug-bites-juniper-software.html
https://www.networkworld.com/article/2289950/bgp-bug-bites-juniper-software.html
https://www.networkworld.com/article/2289950/bgp-bug-bites-juniper-software.html
https://www.f5.com/labs/articles/cisotociso/bgp-dns-and-the-fragility-of-our-critical-systems
https://www.f5.com/labs/articles/cisotociso/bgp-dns-and-the-fragility-of-our-critical-systems
https://www.f5.com/labs/articles/cisotociso/bgp-dns-and-the-fragility-of-our-critical-systems
https://github.com/FRRouting/frr/issues/13007
https://github.com/FRRouting/frr/issues/13007
https://github.com/FRRouting/frr/issues/11912
https://github.com/FRRouting/frr/issues/11912
https://bird.network.cz/?get_doc&v=20&f=bird-5.html
https://bird.network.cz/?get_doc&v=20&f=bird-5.html
https://bst.cisco.com/quickview/bug/CSCvz55292
https://bst.cisco.com/quickview/bug/CSCvz55292
https://github.com/Forescout/bgp_boofuzzer
https://github.com/Forescout/bgp_boofuzzer
https://docs.frrouting.org/projects/dev-guide/en/latest/fuzzing.html
https://docs.frrouting.org/projects/dev-guide/en/latest/fuzzing.html
https://github.com/osrg/gobgp/issues/2208
https://github.com/osrg/gobgp/issues/2208


[26] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
469–483, Oakland, CA, 2015. USENIX Association.

[27] FRR routing software. https://github.com/
FRRouting/frr.

[28] GoBGP routing software. https://github.com/osrg/
gobgp.

[29] Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based whitebox fuzzing. In Proceedings of the
29th ACM SIGPLAN conference on programming lan-
guage design and implementation, pages 206–215, 2008.

[30] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:
Directed automated random testing. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213–223,
2005.

[31] DAN GOODIN. Google goes down after major bgp
mishap routes traffic through china. ARS Technica, 2018.

[32] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz
Arzani, Todd Millstein, and George Varghese. Groot:
Proactive verification of dns configurations. In
Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page
310–328, New York, NY, USA, 2020. Association for
Computing Machinery.

[33] Siva Kesava Reddy Kakarla, Ryan Beckett, Todd Mill-
stein, and George Varghese. {SCALE}: Automatically
finding {RFC} compliance bugs in {DNS} nameservers.
In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 307–323,
2022.

[34] Siva Kesava Reddy Kakarla, Alan Tang, Ryan Beckett,
Karthick Jayaraman, Todd Millstein, Yuval Tamir, and
George Varghese. Finding network misconfigurations by
automatic template inference. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 999–1013, 2020.

[35] James C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, July 1976.

[36] Eduard Kovacs. Bgp flaw can be exploited for prolonged
internet outages. Security Week, 2023.

[37] Hyojeong Lee, Jeff Seibert, Dylan Fistrovic, Charles
Killian, and Cristina Nita-Rotaru. Gatling: Automatic
performance attack discovery in large-scale distributed
systems. ACM Trans. Inf. Syst. Secur., 17(4), apr 2015.

[38] Jonathan Lee and Jeffrey Shallit. Enumerating regular
expressions and their languages. In Proceedings of the
9th International Conference on Implementation and
Application of Automata, CIAA’04, page 2–22, Berlin,
Heidelberg, 2004. Springer-Verlag.

[39] Hongqiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao,
Sri Tallapragada, Nuno Lopes, Andrey Rybalchenko,
Guohan Lu, and Lihua Yuan. Crystalnet: Faithfully
emulating large production networks. In SOSP ’17 Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 599–613. ACM, October 2017.

[40] Nuno Lopes and Andrey Rybalchenko. Fast bgp simula-
tion of large datacenters. In VMCAI: Verification, Model
Checking, and Abstract Interpretation, January 2019.

[41] Robert McMillan. Youtube outage underscores big
internet problem. Info World, 2008.

[42] Dirk Merkel et al. Docker: lightweight linux containers
for consistent development and deployment. Linux j,
239(2):2, 2014.

[43] Sebastian Moss. Verizon bgp route leak causes cloudflare
customer outages, aws issues. Data Center Dynamics,
2019.

[44] Javier Paris and Thomas Arts. Automatic testing of tcp/ip
implementations using quickcheck. In Proceedings
of the 8th ACM SIGPLAN Workshop on Erlang, pages
83–92, 2009.

[45] Quagga routing software. https://www.nongnu.org/
quagga/.

[46] Regular expressions. https://microsoft.github.io/
z3guide/docs/theories/Regular%
20Expressions/.

[47] Yakov Rekhter, Susan Hares, and Tony Li. A Border
Gateway Protocol 4 (BGP-4). RFC 4271, January 2006.

[48] Alan Tang, Siva Kesava Reddy Kakarla, Ryan Beckett,
Ennan Zhai, Matt Brown, Todd Millstein, Yuval Tamir,
and George Varghese. Campion: Debugging router
configuration differences. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, SIGCOMM ’21,
page 748–761, New York, NY, USA, 2021. Association
for Computing Machinery.

[49] Margus Veanes, Colin Campbell, Wolfgang Grieskamp,
Wolfram Schulte, Nikolai Tillmann, and Lev Nachman-
son. Model-based testing of object-oriented reactive

https://github.com/FRRouting/frr
https://github.com/FRRouting/frr
https://github.com/osrg/gobgp
https://github.com/osrg/gobgp
https://www.nongnu.org/quagga/
https://www.nongnu.org/quagga/
https://microsoft.github.io/z3guide/docs/theories/Regular%20Expressions/
https://microsoft.github.io/z3guide/docs/theories/Regular%20Expressions/
https://microsoft.github.io/z3guide/docs/theories/Regular%20Expressions/


systems with spec explorer. Formal Methods and Testing:
An Outcome of the FORTEST Network, Revised Selected
Papers, pages 39–76, 2008.

[50] Brandon Vigliarolo. Faa grounds all us departures after
notam goes down. The Register, 2023.

[51] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D
Ernst, Arvind Krishnamurthy, and Zachary Tatlock.
Bagpipe: Verified bgp configuration checking. In Proc.
OOPSLA, 2016.

[52] zzuf - multi-purpose fuzzer. http://caca.zoy.org/
wiki/zzuf.

http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf

	Introduction
	Background & Motivation
	Route Filtering and Regular Expressions
	BGP Dynamics
	Route Map Semantics

	Model Based Testing for BGP
	Overview
	Decision Process
	Route Filtering
	Zen Model
	Generating Regular Expressions
	Regex Testing

	Route Aggregation
	Testing BGP Dynamics
	Vendor-specific Translators
	Implementation Testing

	Results
	System Overview
	Experiments
	Example Bugs

	Limitations
	Related Work
	Future Work and Conclusion

